lunes, 11 de enero de 2016

Utilidades del titanio

Aplicaciones

Sus aleaciones son duras y resistentes. El carburo de titanio se utiliza en la fabricación de aletas de turbinas en la industria aerospacial y en herramientas de corte. Dada su baja densidad y sus altas prestaciones mecánicas, se emplea mayoritariamente en la fabricación de estructuras y elementos de máquinas en aeronáutica (aviones, cohetes, misiles, satélites de comunicaciones, etc.). Normalmente se suele emplear aleado con el 8 % de aluminio. Para mejorar las propiedades físicas, se le suele alear también con cromo, vanadio y molibdeno.

  • Se emplea también en la fabricación de herramientas de corte (nitrato de titanio), en la construcción de aletas para turbinas (carburo de titanio), así como, en forma de óxido y pulverizado, para la fabricación de pinturas antioxidantes.
  • También se emplea para recubrimiento de edificios.
  • Dada su baja densidad y sus altas prestaciones mecánicas, se emplea en: estructuras y elementos de máquinas en aeronáutica (aviones, cohetes, misiles, transbordadores espaciales, satélites de comunicaciones, etc.).
  • Herramientas de corte (nitrato de titanio).
  • Aletas para turbinas (carburo de titanio).
  • Pinturas antioxidantes (en forma de óxido y pulverizado).
  • Se está utilizando en odontología como base de piezas dentales y en la unión de huesos, así como en articulaciones porque la incrustación de titanio en el hueso del cuerpo humano no provoca rechazo alguno y, pasado algún tiempo, se produce una soldadura de manera natural.
  • Material tipo capsula y crisoles para laboratorios.



  • Su utilización se ha generalizado con el desarrollo de la tecnología aeroespacial, donde es capaz de soportar las condiciones extremas de frío y calor que se dan en el espacio.
  • Se utiliza ampliamente en la industria química y petroquímica, también en la construcción de partes expuestas al agua salina, tales como piezas de barcos y plantas industriales costeras.
  • Industria militar: El titanio se emplea en la industria militar como material de blindaje, en la carrocería de vehículos ligeros, en la construcción de submarinos nucleares y en la fabricación de misiles


 El Titanio y sus aleaciones desarrollan óxidos superficiales sumamente estables, de alta integridad, tenacidad y adherencia. Si este óxido superficial es rayado o dañado, se regenera inmediatamente en presencia de aire o agua. La película protectora de óxido es favorecida a medida que aumenta el carácter oxidante del ambiente. Por ello el titanio resiste a la corrosión en ambientes levemente reductores, neutros y altamente oxidantes hasta temperaturas elevadas. Resiste la acción de ácidos agresivos -excepto en altas concentraciones de ácido clorhídrico y fluorhídrico- que destruyen rápidamente a otros metales como el acero inoxidable.  El titanio es altamente resistente al cloro húmedo (acuoso), al bromo, yodo y productos basados en cloro debido a su carácter altamente oxidante. Además es totalmente resistente a soluciones de cloritos, hipocloritos, cloratos, percloratos y dióxido de cloro.


Titanio

 TITANIO

Metal de color blanco plateado, brillante, ligero, muy duro y de gran resistencia mecánica. Su punto de fusión es de 1668 °C y su densidad de 4’5 g/cm3 Se oxida y es atacado por los ácidos fuertes pero soporta los agentes atmosféricos. Tiene alta resistencia a la corrosión.


 Obtención

Su mineral más común es el rutilo, dióxido de titanio cristalizado y de la ilmenita formada por titanio y hierro. La cloruración es la transformación de óxido de tetracloruro de titanio a temperatura elevada. Una vez condensado y purificado es reducido en un reactor y se obtiene la esponja de titanio. Después se funde y se obtienen los lingotes de metal. La extracción del titanio es un proceso complejo, lo que encarece extraordinariamente el producto final. En la actualidad, los minerales de los que se obtiene el titanio son el rutilo y la ilmenita. El titanio posee las siguientes características: • Es un metal blanco plateado que resiste mejor la oxidación y la corrosión que el acero inoxidable. • Las propiedades mecánicas son análogas, e incluso superiores, a las del acero, pero tiene la ventaja de que las conserva hasta los 400 °C.

Proceso obtención del titanio actual,
En la actualidad se emplea casi exclusivamente el método Kroll:

  • Obtención de tetracloruro de titanio por cloración a 800 °C, en presencia de carbono
  • Se purifica el tetracloruro de titanio mediante destilación fraccionada.
  • A continuación se reduce el TiCl4 con magnesio o sodio (proceso Hunter) molido en una atmósfera inerte,
  • El titanio forma una esponja en la pared del reactor, la cual se purifica por lixiviación con ácido clorhídrico diluido. El MgCl2 se recicla electrolíticamente.
  • La esponja resultante se compacta. Si se reduce el TiCl4 mediante sodio en lugar de magnesio, la esponja resultante es granular, lo que facilita el proceso de compactación. La esponja se funde en un horno con un crisol de cobre refrigerado, mediante un arco eléctrico de electrodo consumible en una atmósfera inerte. Se realiza un primer procesado, en el cual los lingotes se convierten en productos generales de taller.
  • Se realiza un segundo procesado, en el que se obtienen las formas acabadas de los productos

Aleaciones 

Inicialmente la producción mundial de este metal era casi exclusivamente para uso en aplicaciones aeronáuticas y espaciales. Desde entonces su producción ha credido enormemente. Hoy en día, las aleaciones de titanio son comunes, metales de ingeniería fácilmente disponibles que compiten directamente con acero inoxidable y aceros especiales, aleaciones de cobre, de niquel, etc
  • Aleación α (Alfa): Las aleaciones α tienen dos atributos principalmente: la capacidad de soldado y la retención de resistencia a altas temperaturas. La primera resulta de la microestructura unifásica y la segunda es causada por la presencia del aluminio. La aleación α típica (Aleación titanio, 5% aluminio, 2,5% estaño) se utiliza para ensambles de tubos de escape de avión, componentes formados por láminas que operan a temperaturas hasta 480°C, tanque para combustibles de proyectiles y estructuras que operan por cortos periodos a temperaturas de hasta 600°C. 
  • Aleación α + β (Alfa + Beta): Estas aleaciones contiene suficientes elementos estabilizadores β para provocar que la fase β persista hasta la temperatura ambiente, y son más duras que las aleaciones α. La aleación típica α + β (Aleación titanio, 6% aluminio, 4% vanadio): se utiliza para fabricar discos y aletas de hélice de compresor de turbina de gas para avión, accesorios forjados para estructuras de avión, y piezas de láminas metálicas para estructuras de avión. 
  • Aleación β (Beta): La aleación típica β (Aleación titanio, 13% vanadio, 11% cromo, 3% aluminio) se utiliza para fabricar sujetadores de alta resistencia y para componentes aeroespaciales que requieren alta resistencia a temperaturas moderadas. Cuando se combina titanio con niobio, se forma un compuesto intermetálico superconductor; cuando se le combina con aluminio, se produce una nueva clase de aleaciones intermetálicas.